Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Axion-like particles may form a network of cosmic strings in the Universe today that can rotate the plane of polarization of cosmic microwave background (CMB) photons. Future CMB observations with improved sensitivity might detect this axion-string-induced birefringence effect, thereby revealing an as-yet unseen constituent of the Universe and offering a new probe of particles and forces that are beyond the Standard Model of Elementary Particle Physics. In this work, we explore how spherical convolutional neural networks (SCNNs) may be used to extract information about the axion string network from simulated birefringence maps. We construct a pipeline to simulate the anisotropic birefringence that would arise from an axion string network, and we train SCNNs to estimate three parameters related to the cosmic string length, the cosmic string abundance, and the axion-photon coupling. Our results demonstrate that neural networks are able to extract information from a birefringence map that is inaccessible with two-point statistics alone (i.e., the angular power spectrum). We also assess the impact of noise on the accuracy of our SCNN estimators, demonstrating that noise at the level anticipated for Stage IV (CMB-S4) measurements would significantly bias parameter estimation for SCNNs trained on noiseless simulated data, and necessitate modeling the noise in the training data.more » « lessFree, publicly-accessible full text available March 1, 2026
-
The cores of dense stars are a powerful laboratory for studying feebly coupled particles such as axions. Some of the strongest constraints on axionlike particles and their couplings to ordinary matter derive from considerations of stellar axion emission. In this work we study the radiation of axionlike particles from degenerate neutron star matter via a lepton-flavor-violating coupling that leads to muon-electron conversion when an axion is emitted. We calculate the axion emission rate per unit volume (emissivity) and by comparing with the rate of neutrino emission, we infer upper limits on the lepton-flavor-violating coupling that are at the level of . For the hotter environment of a supernova, such as SN 1987A, the axion emission rate is enhanced and the limit is stronger, at the level of , competitive with laboratory limits. Interestingly, our derivation of the axion emissivity reveals that axion emission via the lepton-flavor-violating coupling is suppressed relative to the familiar lepton-flavor-preserving channels by the square of the plasma temperature to muon mass ratio, which is responsible for the relatively weaker limits. Published by the American Physical Society2024more » « less
-
Abstract The presence of axion strings in the Universe after recombination can leave an imprint on the polarization pattern of the cosmic microwave background radiation through the phenomenon of axion-string-induced birefringence via the hyperlight axion-like particle's coupling to electromagnetism. Across the sky, the polarization rotation angle is expected to display a patchwork of uniform regions with sharp boundaries that arise as the `shadow' of axion string loops. The statistics of such a birefringence sky map are therefore necessarily non-Gaussian. In this article we quantify the non-Gaussianity in axion-string-induced birefringence using two techniques, kurtosis and bispectrum, which correspond to 4- and 3-point correlation functions. If anisotropic birefringence were detected in the future, a measurement of its non-Gaussian properties would facilitate a discrimination across different new physics sources generally, and in the context of axion strings specifically, it would help to break degeneracies between the axion-photon coupling and properties of the string network.more » « less
-
Abstract Axion-like particles (ALPs) can form a network of cosmic strings and domain walls that survives after recombination and leads to anisotropic birefringence of the cosmic microwave background (CMB). In addition to studying cosmic strings, we clarify and emphasize how the formation of ALP-field domain walls impacts the cosmic birefringence signal; these observations provide a unique way of probing ALPs with masses in the range 3 H 0 ≲ m a ≲ 3 H cmb . Using measurements of CMB birefringence from several telescopes, we find no evidence for axion-defect-induced anisotropic birefringence of the CMB. We extract constraints on the model parameters that include the ALP mass m a , ALP-photon coupling 𝒜 ∝ g aγγ f a , the domain wall number N dw , and parameters characterizing the abundance and size of defects in the string-wall network. Considering also recent evidence for isotropic CMB birefringence, we find it difficult to accommodate this with the non-detection of anisotropic birefringence under the assumption that the signal is generated by an ALP defect network.more » « less
-
We investigate the quantum dynamics of the forced harmonic oscillator and Jaynes-Cummings models. We find exact solutions for the time-evolution of the Jaynes-Cummings model using Wei-Norman factorization, and describe a technique that may be used to study time-dependent interaction strengths whose evolutions may not be analytically soluble. *This project was funded by the National Science Foundation under grant #1757998. To cite this abstract, use the following reference: http://meetings.aps.org/link/BAPS.2018.TSF.G01.20more » « less
-
Control of quantum phenomena would allow for expanding control theory from classical systems to microscopic ones whose behavior is dictated by quantum mechanics. A current goal of quantum control is to develop a systematic methodology for the manipulation of systems. The approach typically used to solve dynamic quantum systems is useful to analyze characteristics of a system represented by a defined operator. The squeeze operator's actions are characterized by finding the time evolution operator using the Wei-Norman method on the associated Hamiltonian and applying this to number (Fock) states, coherent states, and Schrodinger cat states. This specific case analyzing the Squeeze operator shows that the Wei-Norman method to find time-evolution operator can reveal the dynamics of any system with an associated Lie Algebra basis. Documenting a variety of initial states and initial parameters in a library of cases provides a foundation to achieving greater control in experimental applications as well. *I would like to thank Brigham Young University for hosting this Research Experience for Undergraduates program and the National Science Foundation for funding this research through grant #1757998. To cite this abstract, use the following reference: http://meetings.aps.org/link/BAPS.2018.4CS.L04.6more » « less
An official website of the United States government

Full Text Available